$1.8 \underline{e}^{\underline{x}} \underline{\&} \ln x$
 Leonhard Euler

Summary from Investigating Trig and Exp Functions:
If $f(x)=\sin x$ then $f^{\prime}(x)=\cos x$
link to 1.7 investigation answers

IF $f(x)=\cos x$ then $f^{\prime}(x)=-\sin x$

Effect of Transformations on Base Trig Functions:
vertical translation - no effect on derivative
horizontal translation- derivative has same horizontal translation
vertical stretch/reflection - derivative has same vertical stretch/reflection
**horizontal stretch/reflection -derivative has the same transformations BUT ALSO impacts the vertical stretch of the derivative function
-a shorter period results in steeper tangents, a longer period results in flatter tangents...this affects the amplitude of the derivative function

IF $f(x)=2^{x}$, then $f^{\prime}(x)=2^{x}(k)$, where $k=\ln 2$.
This represents a vertical compression of $f(x)$.

IF $f(x)=5^{x}$, then $f^{\prime}(x)=5^{x}(k)$, where $k=\ln 5$. This represents a vertical stretch of $f(x)$.

Q: If $f(x)=a^{x}$, is there a value of " a " where the derivative function would result in the same curve as the original function? (ie. no stretch or compression)

When "a" is approximately equal to 2.72 or " e ", the derivative function is equivalent to the original function.

When $f(x)=2.72^{x}$, the derivative function $f^{\prime}(x)=2.72^{x}$ (same as $f(x)$) When the base is close to 2.72 the value of k approaches 1 ...therefore, there is no compression or stretch.

$$
\begin{aligned}
& \text { Called Euler's Number } \\
& \text { (thus the "e") }
\end{aligned}
$$

This is one of many definitions of the number " e ".
$e=$ the base of an exponential function whose derivative function is itself
$e=2.718281828459045235360287471352662497757247093699959574966 \ldots$
e is an irrational number (it cannot be written as a fraction, it never ends, there is no repeating pattern)

Recall: The inverse of $y=a^{x}$ can be written:

$$
\begin{aligned}
& x=a^{y} \quad \text { (exponential form) } \\
& y=\log _{a} x \quad \text { (logarithmic form) }
\end{aligned}
$$

Graphically: $y=a^{x}$ and $y=\log _{a} x$ are reflections in the line $y=x$.

Ex. 1 Determine the inverse of each function. Graph $f(x)$ and $f^{\prime}(x)$.
a) $\quad f(x)=3^{x}$

$$
f^{-1}(x)=\log _{3} x
$$

b)

$$
\begin{aligned}
& f(x)=\left(\frac{1}{2}\right)^{x} \\
& f^{-1}(x)=\log _{\frac{1}{2}} x
\end{aligned}
$$

c) $\quad f(x)=e^{x}$

$$
\begin{aligned}
f^{-1}(x) & =\log _{e} x \\
& =\ln x
\end{aligned}
$$

Log Laws: Change of Base Formula:

$$
\begin{aligned}
\log _{a} m+\log _{a} n & =\log _{a} m n \\
\log _{a}\left(\frac{m}{n}\right) & =\log _{a} m-\log _{a} n \\
\log _{a} m^{p} & =p\left(\log _{a} m\right) \\
\log _{a} 1 & =0 \\
\log _{a} a^{x} & =x \\
a^{\log _{a} x} & =x
\end{aligned}
$$

$$
\text { recall: } \begin{aligned}
\log _{b} a & =\frac{\log _{m} a}{\log _{m} b} \\
\text { when } \mathrm{m} & =\mathrm{e}, \\
\log _{b} a & =\frac{\log _{e} a}{\log _{e} b} \\
& =\frac{\ln a}{\ln b}
\end{aligned}
$$

Ex. 2 Simplify/evaluate each of the following.
a) $\quad \log _{5} 1$
$=0$
b) $\quad \log _{6} 6^{x}$
c) $\quad 6^{\log _{6} x}$ $=x$
d) $\ln e$
$=1$
e) $\ln 1$
$=0$
f) $e^{\ln x}$
$=x$
g) $\quad \ln e^{x}$

$$
=x
$$

$$
\log _{e} e^{x}
$$

Ex. 3 Simplify and evaluate each of the following.
a) $\quad \log _{6} 2+\log _{6} 3$
$=\log _{6} 6$
$=1$
b) $\quad \log _{2} 24-\log _{2}\left(\frac{3}{4}\right)$
$24 \cdot \frac{4}{3}$
$=\log _{2} 32$
$=32$
$=5$
c) $\quad 2 \log _{2} \sqrt{8}-2 \log _{2} 4$
d) $3 \ln 2-3 \ln 5$
$=3(\ln 2-\ln 5)$
$=3 \ln \left(\frac{2}{5}\right)$
$=\ln \frac{8}{125}$
$=2 \log _{2} 2^{\frac{3}{2}}-2 \log _{2} 2^{2}$
$=2\left(\frac{3}{2}\right)-2(2)$
$=-1$
$=-1$

Ex. 4 Use your calculator to evaluate.
a) $\quad \log _{2} 18$
b) $\quad \log _{5} 3$
c) $\quad \log _{e} 10$
$=\frac{\log 18}{\log 2}$
$=0.68$

$$
=4.17
$$

$$
\begin{aligned}
& =\frac{\log 10}{\log e} \\
& =\ln 10
\end{aligned}
$$

$$
\therefore 2.3
$$

